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Abstract

In bioinformatics, semantic similarity has been used to compare different

types of biomedical entities, such as proteins, compounds and phenotypes,

based on their biological role instead on what they look like. This manuscript

presents a definition of semantic similarity between biomedical entities described

by a common semantic base (e.g. knowledge graph, ontology) following an

information-theoretic perspective of semantic similarity. It defines the amount

of information content two entries share in a semantic base, and, by extension,

how to compare biomedical entities represented outside the semantic base but

linked through a set of annotations. Software to check how semantic similarity

works in practice is available at: https://github.com/lasigeBioTM/DiShIn/.
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1. Introduction

The biological role of an entity is considered to be its semantics, which has

been increasingly represented through common vocabularies. The entries in

these vocabularies represent biological features, that are often connected with5

each other by semantic relations, such as subsumption. The availability of these

common vocabularies, and their usage to semantically annotate entities enabled

the development of computational semantic similarity measures (Batet et al.,

2014). Before defining semantic similarity, we should start by defining why

bioinformatics needs semantic similarity in the first place, then what it is, to10

finally describe how it can be calculated.

1.1. Why?

Biomedical entities, such as proteins or chemical compounds, are frequently

compared to each other to find similarities that may enable us to transfer knowl-

edge from one another. In the case of proteins, one of the most popular tech-15

niques is to calculate sequence similarity by locating short matches between

sequences and then generate local alignments (Smith and Waterman, 1981). In

the case of compounds, one of the most popular techniques is to calculate the

number of 2D substructural fragments (molecular fingerprints) that they have

in common (Willett, 2011). The above techniques are popular mainly because20

they can be implemented by high-performance tools, such as BLAST (Altschul

et al., 1997), and are based on simple, unambiguous and widely available digital

representations. However, these digital representations result from observations

of how these biomedical entities look like, and not about their semantics. This

means that we cannot have a direct insight into their biological role. Sequence25

similarity and common fingerprints measure how close two entities are in terms

of what they look like, which may differ from their biological role.

There is a relationship between what an entity looks like and its biological

role, i.e. proteins with similar sequence tend to have similar molecular functions,
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as well as with compounds with similar molecular shapes. However, there are30

many exceptions. For example, crystallins have a high sequence similarity to

several different enzymes due to evolution, but in the eye lens their role is to

act as structural proteins, not enzymes (Petsko and Ringe, 2004). Another

example is caffeine and adenosine. These two molecules have a similar shape, so

similar that caffeine is able to bind to adenosine receptors (Gupta and Gupta,35

1999). However, adenosine induces sleep and suppresses arousal while caffeine

makes you more awake and less tired. Semantic similarity addresses the above

exceptions, by comparing biomedical entities based on what they do and not on

what they look like. This means that when looking for similar compounds to

caffeine, other central nervous system stimulants, such as doxapram, will appear40

before adenosine that has the opposite effect.

1.2. What?

Digital representations of biomedical entities based on structure can nor-

mally be expressed using a simple syntax. For example, ASCII strings are used

to represent the nucleotide sequences of genes, the amino acid sequences of pro-45

teins, and also the structure of compounds using SMILES. Semantics is however

more complex since it may have different interpretations according to a given

context. For example, the meaning of a biological role of a given gene may differ

from a biological or medical perspective. For humans the easiest way to repre-

sent semantics is to use free text due to its flexibility to express any concept.50

For example, short text comments are usually valuable semantic descriptions

to understand the meaning of a piece of information. However, for computers

free text is not the most effective form of encoding semantics, making semantic

similarity measurement between different text descriptions almost unfeasible.

In recent years, the biomedical community made a substantial effort in rep-55

resenting the semantics of biomedical entities by using common vocabularies,

which vary from simple terminologies to highly complex semantic models. These

vocabularies are instantiated by Knowledge Organization Systems (KOS) in the

form of knowledge graphs, classification systems, thesauri, lexical databases,
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gazetteers, and taxonomies, and ontologies(Barros et al., 2016). Perhaps the60

most well-known KOS is the Gene Ontology, which has been extensively used

to annotate gene-products with terms describing their molecular functions, bi-

ological processes and cellular components, and the source of most semantic

similarity studies in bioinformatics. This manuscript will denote a KOS used

in a semantic similarity measure as its Semantic-Base (SB). Semantic similar-65

ity measures become feasible when a biomedical community accepts a SB as a

standard to represent the semantics of the entities in their domain. Semantic

similarity is therefore a measure of how close are the semantic representations

of different biomedical entities in a given SB. This means that the semantic

similarity between two entities depends on their SB representation and also on70

a similarity measure that calculates how close these representations are in the

SB.

1.3. How?

We may think that given a SB, we should be able to find the optimal quan-

titative function to implement semantic similarity. However, the notion of se-75

mantic similarity is dependent on what are the objectives of the study. For

example, a biologist and a physician may have two different expectations about

the semantic similarity between the biological roles of two genes.

In bioinformatics, ontologies have been the standard SB for calculating se-

mantic similarity. An ontology is a formal representation of a set of objects80

or entities (the ”universe of discourse” or the domain) and the relationships

between them (Gruber, 1993). Its structure is simultaneously human and com-

puter readable, which allows the use of automatic approaches for inference.

Recently the term knowledge graph has been gaining prominence and is often

used interchangeably with the term ontology. A knowledge graph is a collection85

of assertions or statements from which can be derived a graph-like structure.

The exact definition of a knowledge graph is not consensual in the literature,

but a common distinction is based on its comparatively larger size, the more

heterogeneous source of data used for its construction, which in many cases is
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not manually curated, and the inclusion of a more flexible formal schema. A90

knowledge graph can have an underlying ontology to provide a logical backbone

for the assertions layer, but can also only include a unique layer integrating

both the assertions and the logical schema (Fensel et al., 2020). Despite the

differences, an ontology and a knowledge graph can both be represented and

analysed as a graph structure.95

The SB provides an unambiguous context on where semantic representations

can be interpreted. A semantic representation is sometimes referred as a set of

annotations, i.e. a link between the entity and an entry in the SB. Each entity

can have multiple annotations. This means that the similarity measure may be

applied to multiple entries in the SB. There are also different types of annota-100

tions. For example, an annotation can represent a finding with experimental

evidence, or just a prediction from a computational method. Semantic simi-

larity can explore the different types of annotations, for example to filter out

annotations in which we have lower confidence.

It is possible to bridge the gap between entities expressed through natural105

language in text and the entries of the SB using automatic approaches. This

type of approach, designated by Named Entity Linking, links entities to the

entry (or entries) that best describe its semantic meaning. There are several

challenges for Named Entity Linking, including:

Name variations: like abbreviations, acronyms, alternate spellings or syn-110

onyms. These types of variation are especially frequent in the biomedical

domain. For example, the gene ”CF transmembrane conductance regula-

tor”, whose mutations are responsible for cystic fibrosis, has the following

associated symbols: CFTR, CF, MRP7, ABC35, ABCC7, CFTR/MRP,

TNR-CFTR and dJ760C5.1; the terms ”Kawasaki disease”, ”Kawasaki115

syndrome”, ”Mucocutaneous Lymph Node Syndrome” and ”MLNS” refer

to the same disease.

Ambiguity or polysemy: this means that a given word can have different mean-

ings depending on the context where it appears. For example, the entity
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”iris” can correspond to an animal eye’s anatomical structure or to a plant120

genus.

Unlinkable: absence of entries in the target SB to describe a given entity.

Biomedical knowledge is ever-evolving, which means that manually-curated

structures, such as ontologies, are prone to be out-of-date. This hinders

the semantic representation of entities described in free text.125

Semantic relatedness between two entries in a given SB can be based on

several types of relations described in the SB. Semantic similarity is a specific

case of semantic relatedness since it is only based on hierarchical relations be-

tween SB entries, such as hyponymy/hyperonymy (subsumption) or synonym

relations.130

A similarity measure is a quantitative function between entries in the SB,

which explores the relations between its entries to measure their closeness in

meaning. An entry is normally connected to the other entries by different types

of relations represented in the SB. The similarity measure calculates the degree

of shared meaning between two entries, resulting in a numerical value. For135

example, this can be performed by identifying a path between both entries in

the SB, and calculating the semantic gap encoded in that path. This means that

a semantic similarity measure can be defined by the SB and the quantitative

measure used, which will be formulated in the following sections.

2. Semantic Base140

Definition 1 (Semantic-Base). A Semantic-Base is a tuple SB =< E,R >,

such that E is the set of entries, and R is the set of relations between the entries.

Each relation is pair of entities (e1, e2) with e1, e2 ∈ E.

When using biomedical ontologies, the entries represent the classes, terms

or concepts. This definition ignores the type of relations that may be present145

in the ontology, since semantic similarity measures are normally restricted to

subsumption relations (is-a). Nevertheless, a measure may use other type of
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relation, or even use different types of relations. In the present manuscript, we

focus on semantic similarity measures that are based on hierarchical relations.

The interpretation of its results should take this into consideration. One of the150

reasons why subsumption relations are used is because they are transitive, i.e.

if (e1, e2) ∈ R and (e2, e3) ∈ R then we can implicitly assume that (e1, e3) is

also a valid relation. This enables us to define the ancestors and descendants of

a given entry.

Definition 2 (Ancestors). Given a SB represented by the tuple < E,R >,155

and T the transitive closure of R on the set E (i.e. the smallest relation on

E that contains R and is transitive), the Ancestors of a given entry e ∈ E are

defined as Anc(e) = {a : (e, a) ∈ T}

Definition 3 (Descendants). Given a SB represented by the tuple < E,R >,

and T the transitive closure of R on the set E, the Descendants of a given entry160

e ∈ E are defined as Des(e) = {d : (d, e) ∈ T}

There are multiple successful semantic similarity measures being used in

bioinformatics. Many of them are inspired on the contrast model proposed

by Tversky (1977), in the sense that they balance the importance of common

features versus the exclusives. Thus, a semantic similarity measure can be165

categorized by how it defines the common features, and how it calculates the

importance of each feature. The first step in most measures is to find the

common ancestors in the SB to define the common features.

Definition 4 (Common Ancestors). Given a SB represented by the tuple

< E,R >, the Common Ancestors of two entries e1, e2 ∈ E is defined as170

CA(e1, e2) = Anc(e1) ∩Anc(e2).

3. Information Content

This manuscript follows an information-theoretic perspective of semantic

similarity (Sánchez and Batet, 2011). To calculate the importance of each entry
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the measures identify the information content of each entry. Resnik (1995)175

defined the information content of an entry based on the notion of the entropy of

the random variable X known in information theory (Ross, 2009). The intuition

is to measure the surprise evoked by having an entry e ∈ E in the semantic

representation.

Definition 5 (Information Content). Given a SB represented by the tuple180

< E,R >, and a probability function p : E →]0, 1], the information content of

an entry e ∈ E is defined as IC(e) = −log(p(e)).

The probability function should be defined in a way that bottom-level entries

in the SB become more informative than top-level entries, making the IC(e)

correlated with the specificity of e in the SB.185

The definition of the probability function p can follow two different ap-

proaches:

Intrinsic: p is based only on the internal structure of the SB.

Extrinsic: p is based on the frequency of each entry in an external dataset.

Considering the graph represented in Figure1 as our SB, and assuming an190

intrinsic approach p(e) = Desc(e)+1
|E| , then we have all the bottom entries with p

equal to 1
8 , p(coinage) =

4
8 , p(precious) =

5
8 , and p(metal) = 8

8 . Thus, we have

IC(metal) < IC(precious) < IC(coinage) < IC(platinum) . . . < IC(copper).

Note also that the addition of 1 to avoid having a zero probability for the entries

without descendants.195

Definition 6 (Frequency). Given a SB represented by the tuple < E,R >,

and an external dataset D , and a predicate refer(d, e) that is true when a data

element d ∈ D refers the entry e ∈ E, then the frequency of a given entry in

that dataset is defined as

FD(e) = |{d : refer(e1, d) ∧ d ∈ D ∧ e1 ∈ Desc(e) ∪ {e}}|
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metal

precious coinage

palladiumplatinum silvergold copper

Figure 1: This graph represents an example of a classification of metals with multiple inheri-

tance, since gold and silver are considered both precious and coinage metals.

Note that when using subsumption relations, i.e. an occurrence of an entry,

it is also an implicit occurrence of all its ancestors.

Definition 7 (Extrinsic Probability). Given a SB represented by the tuple

< E,R >, and a frequency measure FD the extrinsic probability function of an

entry e ∈ E is defined as

p(e) =
FD(e) + 1

max{FD(e1) : e1 ∈ E}+ 1

.

Note that top-level entries have high frequency values due the occurrences

of their descendants, so their IC is close to zero. Note again the addition of 1200

this time in both parts of the fraction to avoid having a zero probability.

Considering again the graph represented in Figure1 as our SB, and as-

sume an external dataset D containing exactly one occurrence of each entry,

then we have all the bottom entries with FD equal to 2
9 , FD(coinage) = 5

9 ,

FD(precious) = 6
9 , and FD(metal) = 9

9 . Thus, we again have IC(metal) <205
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IC(precious) < IC(coinage) < IC(platinum) . . . < IC(copper). We will as-

sume this IC instantiation for the remainder examples in this manuscript.

4. Shared Ancestors

Not all ancestors are relevant when calculating semantic similarity since

some of them are already subsumed by others and do not represent any new210

information. So normally the measures select only the most informative ones.

Definition 8 (Most Informative Common Ancestors). Given a SB rep-

resented by the tuple < E,R >, and an IC measure, the Most Informative

Common Ancestors of two entries e1, e2 ∈ E is defined as

MICA(e1, e2) = {a : a ∈ CA(e1, e2) ∧ IC(a) = max{IC(a1) : a ∈ CA(e1, e2)}}

Considering again the graph represented in Figure1 as our SB, and the ex-

trinsic IC defined above, then we have MICA(platinum, copper) = {metal},

MICA(silver, gold) = {coinage}, and MICA(platinum, gold) = {precious}.

Sometimes the most informative common ancestors are not sufficient, since215

they may neglect multiple inheritance relations. Thus, instead of MICA, the

measures can use the disjunctive common ancestors (Couto and Silva, 2011).

Definition 9 (Disjunctive Common Ancestors). Given a SB represented

by the tuple < E,R >, and an IC measure, and a function PD : E×E×E → N,

that calculates the difference between the number of paths from the two entries

to one of their comon ancestors, the Disjunctive Common Ancestors of two

entries e1, e2 ∈ E is defined as

DCA(e1, e2) = {a :

a ∈ CA(e1, e2) ∧

∀ax∈CA(e1,e2)PD(e1, e2, a) = PD(e1, e2, ax)

⇒ IC(a) > IC(ax)}
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Considering again the graph represented in Figure1 as our SB, the extrinsic

IC defined above, then we have DCA(silver, gold) = {coinage, precious}, and

DCA(platinum, gold) = {precious,metal}.220

5. Shared Information

The importance of common features is defined by the shared IC present in

the common ancestors, normally its average.

Definition 10 (Shared Information Content). Given a SB represented by

the tuple < E,R >, and an IC measure, the Shared Information Content of two225

entries e1, e2 ∈ E is defined as ICshared(e1, e2) = {IC(a) : a ∈ DCA(e1, e2)}.

Note that DCA can be replaced by MICA, however since all ancestors in

MICA have the same IC value by definition only that IC value is used in

practice.

Considering again the graph represented in Figure1 as our SB, the extrinsic230

IC defined above, then when using MICA we have ICshared(platinum, gold) =

−log( 69 ). If we use DCA then we have ICshared(platinum, gold) = (−log( 69 )−

log( 99 ))/2.

More recently, Ferreira et al. (2013) proposed the usage of the disjointness

axioms in semantic similarity by defining the disjoint shared information con-235

tent. The idea is that if we know that two entries are disjoint, then we should

decrease their amount of shared information.

Definition 11 (Disjoint Shared Information Content). Given a SB rep-

resented by the tuple < E,R >, a set of axioms A, and an ICshared measure,

the Disjoint Shared Information Content of two entries, e1, e2 ∈ E is defined as240

ICdshared(e1, e2) = ICshared(e1, e2) − k(e1, e2) with k : E × E → N satisfying

the following conditions: i) k(e1, e2) > 0 if e1 and e2 are disjoint according to

A; ii) k(e1, e2) = 0 if otherwise.
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6. Similarity Measure

Definition 12 (Semantic Similarity Measure). Given a SB represented by245

the tuple < E,R >, a Semantic Similarity Measure is a quantitative function

SSM : E × E → R.

Note that a semantic similarity measure is not expected to be instantiated

by the inverse of a metric or distance function, but the following conditions are

normally satisfied:250

non-negativity: SSM(e1, e2) ≥ 0 with e1, e2 ∈ E;

symmetry: SSM(e1, e2) = SSM(e2, e1) with e1, e2 ∈ E.

Many measures are also normalized, i.e. SSM(e1, e2) ∈ [0..1] with e1, e2 ∈ E;

and SSM(e, e) = 1 with e ∈ E.

The seminal work based on Resnik’s measure (Resnik, 1995) was one of the

first measures to be successfully applied to a biomedical ontology, namely the

Gene Ontology. (Lord et al., 2003). The measure was defined as:

SSMresnik(e1, e2) = ICshared(e1, e2)

Another well-known measure, was defined by Lin et al. (1998) as:

SSMlin(e1, e2) =
2× ICshared(e1, e2)

IC(e1) + IC(e2)

where the denominator represents the exclusive features.255

Note that both measures are independent of using MICA or DCA as the

common features.

Considering again the graph represented in Figure1 as our SB, the extrinsic

IC defined above, and MICA, then we have SSMresnik(platinum, gold) =

−log( 69 ) and SSMlin(platinum, gold) = (2×−log( 69 ))/(−log( 29 )− log( 29 )).260

Table 1 shows the SSM described in this manuscript.

12



Resnik SSMresnik(e1, e2) = ICshared(e1, e2)

Lin SSMlin(e1, e2) =
2×ICshared(e1,e2)
IC(e1)+IC(e2)

Jaccard SSMjaccard(AS(b1), AS(b2)) =
∑

{IC(e):e∈{Anc(e1):e1∈AS(b1)}∩{Anc(e2):e2∈AS(b2)}}∑
{IC(e):e∈{Anc(e1):e1∈AS(b1)}∪{Anc(e2):e2∈AS(b2)}}

Table 1: Caption

7. Entity Similarity

Until now we only defined SSM in terms of entries, but a biomedical entity

may not be directly represented in the SB, but instead linked to the SB through

annotations. For example in the case of proteins, they are not represented as265

entries of the Gene Ontology but through annotations. In opposition, chemi-

cal compounds are represented as entries of the ontology Chemical Entities of

Biological Interest (ChEBI).

Definition 13 (Annotation). Given a SB represented by the tuple < E,R >

and a set of biomedical entities B, a predicate annotates(b, e) that is true when

the entity b ∈ B is annotated with the entry e ∈ E, then the annotation set of

a biomedical entity (or concept) b ∈ B is defined as

AS(b) = {e : e ∈ E ∧ annotates(b, e)}

This definition ignores the type of annotation, e.g. with experimental or

computational evidence, since the similarity measure calculation is usually in-270

dependent of this information. It is up to the user to decide which type of

annotations to include. In the case of biomedical entities identified in a piece of

text, a Named Entity Linking approach can annotate a given biomedical entity

a with the entry e (or entries) in the SB that best represents its meaning.

To compare biomedical entities we need to extend the SSM definition so it275

applies to the two sets of entries of each entity, instead of a single entry for each

entity. For readability we will use the same function name SSM , to represent

different functions according to the input domain, i.e. two entries or two sets of

entries.
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There are multiple successful instantiations of entity semantic similarity mea-280

sures and most of them use two aggregate functions (e.g. average, maximum)

on the results from comparing each pair of entries annotated to each entry.

Definition 14 (Aggregate Measure). Given a SB represented by the tuple

< E,R >, a set of biomedical entities B, two aggregate functions f and g, and

two biomedical entities b1, b2 ∈ B the Aggregate Similarity Measure is defined

as

SSMaggregate(AS(b1), AS(b2)) = f({g({SSM(e1, e2) : e1 ∈ AS(b1)}) : e2 ∈ AS(b2)})

Considering again the graph represented in Figure1 as our SB, f as the av-

erage function, g as the maximum function, two entities containing metals B =

{α, β}, and their respective annotation set AS(α) = {platinum, palladium}

AS(β) = {copper, gold}, then we have

SSMaggregate({platinum, palladium}, {copper, gold}) = avg{

max{SSM(platinum, copper), SSM(platinum, gold)},

max{SSM(palladium, copper), SSM(palladium, gold)}}

Another popular approach is to apply the Jaccard coefficient to all common

entries vs. the exclusive ones.

Definition 15 (Jaccard Measure). Given a SB represented by the tuple <

E,R >, a set of biomedical entities B, an annotation set AT , and two biomedical

entities b1, b2 ∈ B the similarity measure is defined as

SSMjaccard(AS(b1), AS(b2)) =∑
{IC(e) : e ∈ {Anc(e1) : e1 ∈ AS(b1)} ∩ {Anc(e2) : e2 ∈ AS(b2)}}∑
{IC(e) : e ∈ {Anc(e1) : e1 ∈ AS(b1)} ∪ {Anc(e2) : e2 ∈ AS(b2)}}

Considering the example above of α and β when using Jaccard we will have

SSMjaccard({platinum, palladium}, {copper, gold}) =
IC(precious) + IC(metal)

IC(coinage) + IC(precious) + IC(metal)

14



7.1. Vector representations285

Although not the scope of the present manuscript, which focuses on measures

based on Information Content, a currently active research direction investigates

the use of vector-based representations or embeddings for entity comparison,

including the determination of similarity.

For instance, Zhong et al. (2019) proposed GO2Vec, a method that first290

converts the terms and annotations present in the Gene Ontology into vectors

and then leverages these representations to calculate the similarity between Gene

Ontology terms and to determine the functional similarity between proteins.

Littmann et al. (2021) proposed a method based on language models to an-

notate proteins with Gene Ontology terms. The authors used SeqVec and Prot-295

BERT to encode proteins in fixed-length vectors. Then, the similarity between

proteins was calculated using the Euclidian distance between the respective

vectors. The Gene Ontology terms can thus be transferred from an annotated

protein to a similar non-annotated protein.

Other vector-based approaches are developed for the task of predicting protein-300

protein interactions (PPIs), such as Zhong and Rajapakse (2020); Yang et al.

(2020); Nasiri et al. (2021); Smaili et al. (2018). The approach proposed by

Zhong and Rajapakse (2020) first builds Gene Ontology annotation graphs that

include relations between terms and between terms and proteins, then learns

vector representations for the nodes, and then the similarity between proteins is305

measured based on the distance between the respective vector representations,

calculated through the modified Hausdorff distance. Yang et al. (2020) also

proposed a method to learn graph representations that are used for predicting

PPIs. Proteins are encoded based on their raw sequence and graph information

and then the resulting embeddings are used to train a feed-forward neural net-310

work that predicts an interaction between a given pair of proteins. Nasiri et al.

(2021) proposed a method based on the DeepWalk algorithm, which uses ran-

dom walks to derive vector representations for the nodes of a graph, which are

used to predict PPIs. Smaili et al. (2018) proposed Onto2Vec, which generates

protein vector-based representations. First, representations for proteins and315
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Gene Ontology terms are built according to the ontology structure and UniProt

protein annotations. Proteins are represented as the sum of the vectors for each

of the terms present in annotations and the distance between a pair of proteins

is given by the cosine similarity between the respective vectors.

8. Future Directions320

This manuscript is focused on defining semantic similarity using a single

KOS, however a large amount of biomedical resources use multiple KOS de-

scribing a single domain from different perspectives or even distinct domains.

Calculating semantic similarity using multiple KOS as SB is a complex prob-

lem, and only a few works have addressed it (Solé-Ribalta et al., 2014). Thus,325

a future formulation of multiple-domain semantic similarity is much required.

Another issue is the incompleteness of KOS. They normally represent work

in progress, being updated as our knowledge of the domain becomes more sound

and comprehensive. Keeping a KOS up-to-date is also a daunting task in terms

of human effort, especially in large KOS, so we should always expect to have330

a delay until new knowledge is incorporated. This means that the common

features identified in a KOS may be incomplete, and the exclusives features

may not even be exclusive in the future. If a biomedical entity is not annotated

with a specific feature, that does not mean that the entity does not have that

feature, it only means that we do not know if it has or not. Thus, a future335

formulation of semantic similarity that takes into account the incompleteness

of KOS is also much required. A type of approach to deal with this problem

of KOS incompleteness attempts to associate biomedical entities with features

or entries in the KOS that only partially describe their meaning (Ruas and

Couto, 2022). The assumption is that it is preferable to have an entity partially340

annotated instead of simply discarding the entity and losing all of its respective

semantic information.
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9. Closing Remarks

This manuscript presented a definition of semantic similarity following an

information-theoretic perspective that covers a large number of the measures345

currently being used in bioinformatics. It defined the amount of information

content two entries share in a SB, and how it can be extended to compare

biomedical entities represented outside the SB but linked through a set of an-

notations.

The manuscript aims at providing a generic and inclusive formulation that350

can be helpful to understand the fundamentals of semantic similarity and at the

same time be used as a guideline to distinguish between different approaches.

The formulation did not aim at providing a one size fits all definition, i.e. trying

to represent all measures being proposed.

The manuscript presented well-known measures in bioinformatics, Resnik,355

Lin and Jaccard coefficient, according to the proposed definitions. It also pre-

sented their results when applied to simple example of a classification of metals,

which is used along the text to clarify the definitions being presented. Finally,

a software repository 1 is available to test and learn more on how semantic

similarity works in practice.360
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Nomenclature

CA Common Ancestors

CE Common Entries

DCA Disjunctive Common Ancestors

FD Frequency in a external dataset D

IC Information Content

ICdshared Disjoint Shared Information Content

ICshared Shared Information Content

MICA Most Informative Common Ancestors

SSM Semantic Similarity Measure

KOS Knowledge Organization Systems

SB Semantic-Base
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Solé-Ribalta, A., Sánchez, D., Batet, M., Serratosa, F., 2014. Towards the

estimation of feature-based semantic similarity using multiple ontologies.420

Knowledge-Based Systems 55, 101–113.

Tversky, A., 1977. Features of similarity. Psychological review 84, 327.

Willett, P., 2011. Similarity searching using 2d structural fingerprints. Chemoin-

formatics and computational chemical biology , 133–158.

Yang, F., Fan, K., Song, D., Lin, H., 2020. Graph-based prediction of425

protein-protein interactions with attributed signed graph embedding.

BMC Bioinformatics 21, 1–16. URL: https://bmcbioinformatics.

biomedcentral.com/articles/10.1186/s12859-020-03646-8,

doi:10.1186/S12859-020-03646-8/TABLES/4.

20

https://www.sciencedirect.com/science/article/pii/S1532046422001526
https://www.sciencedirect.com/science/article/pii/S1532046422001526
https://www.sciencedirect.com/science/article/pii/S1532046422001526
http://dx.doi.org/https://doi.org/10.1016/j.jbi.2022.104137
http://dx.doi.org/10.1093/bioinformatics/bty259
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-020-03646-8
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-020-03646-8
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-020-03646-8
http://dx.doi.org/10.1186/S12859-020-03646-8/TABLES/4


Zhong, X., Kaalia, R., Rajapakse, J.C., 2019. Go2vec: Transforming go terms430

and proteins to vector representations via graph embeddings. BMC Genomics

20. doi:10.1186/s12864-019-6272-2.

Zhong, X., Rajapakse, J.C., 2020. Graph embeddings on gene ontology anno-

tations for protein–protein interaction prediction. BMC Bioinformatics 21.

doi:10.1186/s12859-020-03816-8.435

11. Further Reading

• Batet, M., Sánchez, D., 2015. A review on semantic similarity, Encyclo-

pedia of Information Science and Technology, Third Edition. IGI Global,

pp. 7575-7583.

• Couto, F.M., Pinto, H.S., 2013. The next generation of similarity mea-440

sures that fully explore the semantics in biomedical ontologies. Journal of

bioinformatics and computational biology 11, 1371001.

• Harispe, S., Ranwez, S., Janaqi, S., Montmain, J., 2015. Semantic simi-

larity from natural language and ontology analysis. Synthesis Lectures on

Human Language Technologies 8, 1-254.445

• Pedersen, T., Pakhomov, S.V., Patwardhan, S., Chute, C.G., 2007. Mea-

sures of semantic similarity and relatedness in the biomedical domain.

Journal of biomedical informatics 40, 288-299.

• Pesquita, C., Faria, D., Falcao, A., Lord, P., Couto, F., 2009. Seman-

tic similarity in biomedical ontologies. PLoS computational biology 5,450

e1000443

12. Author Biography and Photograph

Francisco M. Couto is currently an associate professor with habilitation at

Universidade de Lisboa (Faculty of Sciences) and a researcher at LASIGE. He

21

http://dx.doi.org/10.1186/s12864-019-6272-2
http://dx.doi.org/10.1186/s12859-020-03816-8


graduated (2000) and has a master (2001) in Informatics and Computer Engi-455

neering from the IST. He concluded his doctorate (2006) in Informatics, special-

ization Bioinformatics, from the Universidade de Lisboa. He was an invited re-

searcher at EBI, AFMB-CNRS, BioAlma during his doctoral studies. His main

research contributions cover several key aspects of bioinformatics and knowl-

edge management, namely in proposing and developing: various text mining460

solutions that explore the semantics encoded in ontologies; semantic similarity

measures and tools using biomedical ontologies; and ontology and linked data

matching systems. Until August 2022, he published 2 books; was co-author of

10 chapters, 62 journal papers (47 Q1 Scimago), and 32 conference papers (10

core A and A*); and was the supervisor of 10 PhD theses and of 51 master the-465

ses. He received the Young Engineer Innovation Prize 2004 from the Portuguese

Engineers Guild, and an honorable mention in 2017 and the prize in 2018 of the
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